Chemistry and Biochemistry

David C. Chatfield, Associate Professor and Chairperson
Irina Agoulnik, Associate Professor, College of Medicine
Jose R. Almirall, Professor and Director of IFRI
David A. Becker, Associate Professor
John Berry, Assistant Professor
Yong Cai, Professor
Anthony P. DeCaprio, Associate Professor and Director of Forensic Science Certificate Program
Milagros Delgado, Lecturer and Coordinator of Laboratories at BBC
Kenneth G. Furton, Professor and Dean, College of Arts and Sciences
Piero R. Gardinali, Associate Professor
Palmer Graves, Associate Chair, Lecturer and Coordinator of General Chemistry Laboratories
Arthur W. Herriott, Professor Emeritus
Rudolf Jaffe, Professor and Director of SERC
Jeffrey A. Joens, Professor and Undergraduate Program Director
Konstantinos Kavallieratos, Associate Professor
Leonard S. Keller, Professor and Director of Liberal Studies
John T. Landrum, Professor and Associate Dean of Pre-Health Professional Advising
Watson J. Lees, Associate Professor
Fenfei Leng, Associate Professor
Joseph Lichter, Lecturer and Coordinator of Organic Chemistry Laboratories
Yuan Liu, Assistant Professor
Ramon Lopez de la Vega, Associate Professor
Bruce R. McCord, Professor
Alexander M. Mebel, Professor and Chemistry Graduate Program Director
Jaroslava Miksovksa, Assistant Professor
Joong-ho Moon, Assistant Professor
Zaida Morales-Martinez, Professor Emerita
Kevin E. O'Shea, Professor
J. Martin E. Quirke, Professor
Kathleen S. Rein, Professor
Barry P. Rosen, Professor, College of Medicine
Uma Swamy, Lecturer and Coordinator of General Chemistry Laboratories
Xiaotang Wang, Associate Professor and Biochemistry Graduate Program Director
Stephen Winkle, Associate Professor
Stanislaw F. Wnuk, Professor

Bachelor of Science

Degree Program Hours: 120

The B.S. in Chemistry program is approved by the American Chemical Society and prepares the student for graduate study or a professional career as a chemist in industry, in government service, or in secondary school teaching. (Students interested in secondary teacher certification should contact the College of Education Advising Center at (305) 348-2768.)

Lower Division Preparation

Common Prerequisite Courses and Equivalencies

<table>
<thead>
<tr>
<th>FIU Course(s)</th>
<th>Equivalent Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 1045, CHM 1045L</td>
<td>CHMX045/X045L or CHMX040 and CHMX041</td>
</tr>
<tr>
<td></td>
<td>CHMX045C</td>
</tr>
<tr>
<td>CHM 1046, CHM 1046L</td>
<td>CHMX046/X046L or CHMX046C</td>
</tr>
<tr>
<td>CHM 2210, CHM 2210L</td>
<td>CHMX210/X210L and CHMX211/X211L</td>
</tr>
<tr>
<td>CHM 2211, CHM 2211L</td>
<td>CHMX210C and CHMX211C</td>
</tr>
<tr>
<td>PHY 2048, PHY 2048L</td>
<td>PHYX048/X048L¹ and PHYX049/X049L¹</td>
</tr>
<tr>
<td>PHY 2049, PHY 2049L</td>
<td>PHYX048C¹ and PHYX049C¹</td>
</tr>
<tr>
<td></td>
<td>PHY053/X053L² and PHY054/X054L²</td>
</tr>
<tr>
<td></td>
<td>PHYX053C² and PHYX054C²</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>MACX311 or MACX281</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>MACX312 or MACX282</td>
</tr>
</tbody>
</table>

¹The PHYX048/PHYX049 sequence is required for the Bachelor in Science degree. It is an option for the Bachelor in Arts degree.
²The PHYX053/PHYX054 sequence is not accepted for the Bachelor in Science degree.

Courses which form part of the statewide articulation between the State University System and the Community College System will fulfill the Lower Division Common Prerequisites.

Common Prerequisites

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 1045</td>
<td>3</td>
</tr>
<tr>
<td>CHM 1045L</td>
<td>3</td>
</tr>
<tr>
<td>CHM 1046</td>
<td>3</td>
</tr>
<tr>
<td>CHM 1046L</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2210L</td>
<td>1</td>
</tr>
<tr>
<td>CHM 2211</td>
<td>1</td>
</tr>
<tr>
<td>CHM 2211L</td>
<td>1</td>
</tr>
<tr>
<td>PHY 2048L</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2049L</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>4</td>
</tr>
</tbody>
</table>

¹Either the General Physics sequence or the Organic Chemistry Sequence must be taken at the lower division. Whichever is not taken must be taken before the degree is granted.

To qualify for acceptance into the upper division, FIU undergraduates must have met all the lower division requirements including CLAS, completed 60 semester hours, and must be otherwise acceptable to the program.

Upper Division Program: (60 total hours, 48 hours must be 3000 level and above)

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 3120</td>
<td>3</td>
</tr>
<tr>
<td>CHM 3120L</td>
<td>1</td>
</tr>
<tr>
<td>CHM 3410</td>
<td>4</td>
</tr>
</tbody>
</table>
CHM 3410L Physical Chemistry I Lab 1
CHM 3411 Physical Chemistry II 4
CHM 3411L Physical Chemistry II Lab 2
CHM 4130 Instrumental Analysis 3
CHM 4130L Instrumental Analysis Lab 1
CHM 4220 Advanced Organic Chemistry 3
CHM 4304 Biological Chemistry I 3
CHM 4230L Structure Determination Laboratory 1
or
CHM 4304L Biological Chemistry I Lab 1
CHM 4611 Advanced Inorganic Chemistry 3
CHM 4611L Advanced Inorganic Chemistry Laboratory 1
CHM 4910L Undergraduate Research in Chemistry 3
CHM 4930 Senior Seminar 1

One additional senior-level (4000) Chemistry course *

At least three additional credits to be chosen from the following list:
MAP 2302 Differential Equations 3
COP 2270 C for Engineers 3
MAC 2313 Multivariable Calculus 4

Students are required to take a nationally-normed chemistry examination in their last semester before graduation.

*CHM 4911L may not be used to satisfy this requirement.

Bachelor of Science in Chemistry with Honors

Admission to the Program
To be a candidate for the honors in chemistry degree a student must first:
1. Be admitted to the BS in Chemistry program with a lower division GPA of at least 3.5 in science and math courses, and an overall GPA of at least 3.2,
2. Have completed at least twelve semester hours of chemistry courses,
3. Have arranged to be sponsored by a tenured or tenure-earning faculty researcher, and
4. Submit a letter to the Chemistry Undergraduate Committee requesting permission to pursue the honors track course of study.
5. Note: Any exceptions to these admissions criteria must be approved by the Undergraduate Program Director.

Graduation Requirements
1. Completion of all requirements for the BS in Chemistry with a minimum GPA of 3.5 in science and math courses and overall GPA of 3.2.
2. Completion of an honors research project in collaboration with a faculty advisor. The results of the research project must be written in the form of an honors thesis which is written in American Chemical Society-style publication format. The student must register for Undergraduate Research (CHM 4910L) and receive a grade of “B” or better. The faculty advisor and the departmental Undergraduate Research Committee must judge the thesis as suitable in style and content for publication in an appropriate American Chemical Society journal.
3. Submission of two completed and approved copies of the Honors Thesis must be presented to the Chemistry Department office; one copy is to be kept in the department, and the second copy is to be housed in the University library.
4. The results of the research project must be presented orally to an audience of peers and faculty members from all science department honors programs. The presentation will be graded by the Undergraduate Research Committee, and the student must receive a score of 4 or 5 on a 5-point scale for his/her presentation.

Combined BS/MS in Chemistry
To be considered for admission to the combined bachelor’s/master’s degree program, students must have completed at least 75-90 credits in the bachelor’s degree program at FIU and meet the admissions criteria for the graduate degree program to which they are applying. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships. Only 5000-level or higher courses, and no more than the number of credits specified by the program catalog, may be applied toward both degrees.

Admission Requirements
- Current enrollment in the Bachelor of Science program in chemistry at FIU.
- Current GPA of 3.2 or higher.
- GRE general test score of 1000 (verbal and quantitative combined), with a minimum quantitative score of 550.
- Three letters of recommendation.
- Approval of the Chemistry Graduate Committee.

Completion Requirements
Completed Bachelor of Science degree in chemistry at FIU

Required:
- 9 credits (3 courses) selected from graduate chemistry core courses. Required courses must be completed with an average of “B” or higher, and only one course may receive a grade less than “B-”.
- Electives: 3 courses selected from the Chemistry Graduate Elective Offerings.
- 9 credits of Thesis Research and 2 credits of Thesis.
- 1 credit of Colloquium.
- Overlap: Up to 3 graduate level courses (9 credits) may be used to satisfy both the Bachelor’s and Master’s degree requirements.

Combined BS in Chemistry/MS in Forensic Science
To be considered for admission to the combined bachelor’s/master’s degree program, students must have completed at least 75-90 credits in the bachelor’s degree
program at FIU and meet the admissions criteria for the graduate degree program to which they are applying. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor's degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships. Only 5000-level or higher courses, and no more than the number of credits specified by the program catalog, may be applied toward both degrees.

Admission Requirements
- Current enrollment in the Bachelor of Science program in chemistry at FIU.
- Current GPA of 3.2 or higher.
- GRE general test score of 1000 (verbal and quantitative combined), with a minimum quantitative score of 550.
- Three letters of recommendation.
- Approval of the Chemistry Graduate Committee.

Completion Requirements
Completed Bachelor of Science degree in chemistry at FIU

Required:
- BSC 5406 Forensic Biology
- CHS 5542 Forensic Chemistry
- CHS 5535 Forensic Analysis
- Required courses must be completed with an average of "B" or higher, and only one course may receive a grade of less than "B-".
- Electives: 5 courses selected from the Forensic Science Graduate Elective Offerings.
- 6 credits of Thesis Research and 1 credit of Thesis.
- 1 credit of Colloquium.
- Overlap: Up to 3 graduate level courses (9 credits) may be used to satisfy both the Bachelor's and Master's degree requirements.

Bachelor of Arts

Degree Program Hours: 120
This program is designed for students preparing for careers in medicine, pharmacy, dentistry, environmental studies, veterinary medicine, patent law, forensic science, secondary science education*. The BA in Chemistry program is organized into four alternative areas of concentration. Students may choose to follow the "Standard BA in Chemistry Concentration" or – in consultation with an advisor – choose a specific area of emphasis: the Biochemistry Concentration, the Environmental Chemistry Concentration, or the Forensic Chemistry Concentration. Each of the four options is described below.
*(Students interested in secondary teacher certification should contact the College of Education at (305) 348-2768.)

Lower Division Preparation for All Areas of Concentration

Common Prerequisite Courses and Equivalencies

<table>
<thead>
<tr>
<th>FIU Course(s)</th>
<th>Equivalent Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 1045, CHM 1045L</td>
<td>CHMX045/X045L or CHMX040 and CHMX041</td>
</tr>
<tr>
<td>CHMX045C</td>
<td></td>
</tr>
<tr>
<td>CHM 1046, CHM 1046L</td>
<td>CHMX046/X046L or CHMX046C</td>
</tr>
<tr>
<td>CHMX210/X210L and CHMX211/X211L or CHMX210C and CHMX211C</td>
<td></td>
</tr>
<tr>
<td>PHY 2048, PHY 2048L</td>
<td>PHYX048/X048L¹ and PHYX048C¹ or PHYX049C¹ or PHY053/X053L² and PHY054/X054L² or PHYX053C² and PHYX054C²</td>
</tr>
<tr>
<td>PHY 2049, PHY 2049L</td>
<td>PHYX049/X049L¹ or PHYX048C¹ or PHYX049C¹ or PHYX053C² and PHYX054C²</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>MACX311 or MACX281</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>MACX312 or MACX282</td>
</tr>
</tbody>
</table>

¹The PHYX048/PHYX049 sequence is required for the Bachelor in Science degree. It is an option for the Bachelor in Arts degree.
²The PHYX053/PHYX054 sequence is not accepted for the Bachelor in Science degree.

Courses which form part of the statewide articulation between the State University System and the Community College System will fulfill the Lower Division Common Prerequisites.

Common Prerequisites

CHM 1045	General Chemistry I	3
CHM 1045L	General Chemistry Lab I	1
CHM 1046	General Chemistry II	3
CHM 1046L	General Chemistry II Lab	1
CHM 2210	Organic Chemistry I¹	3
CHM 2210L	Organic Chemistry I Lab¹	1
CHM 2211	Organic Chemistry II⁴	3
CHM 2211L	Organic Chemistry II Lab¹	1
PHY 2048	Physics with Calculus I²	4
PHY 2048L	Physics with Calculus I Lab¹	1
PHY 2049	Physics with Calculus II⁴	4
PHY 2049L	Physics with Calculus II Lab¹	1
MAC 2311	Calculus I	4
MAC 2312	Calculus II	4

¹Either the General Physics sequence or the Organic Chemistry sequence must be taken at the lower division. Whichever is not taken must be taken before the degree is granted.
²For the Bachelor of Arts degree, PHY 2053 and PHY 2054 may be substituted for PHY 2048 and PHY 2049.

Other Lower Division Courses Required for the Degree:

| BSC 1010 | General Biology I | 3 |
| BSC 1010L | General Biology I Lab | 1 |
To qualify for acceptance into the upper division, FIU undergraduates must have met all the lower division requirements including CLAS, completed 60 semester hours, and must be otherwise acceptable to the program.

Upper Division Program: (60 total hours, 48 hours must be 3000 level and above)

Upper Division Courses Required for All Concentrations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 3120</td>
<td>Intro to Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 3120L</td>
<td>Intro to Analytical Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 3400</td>
<td>Fundamentals of Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 3400L</td>
<td>Fundamentals of Physical Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 4304</td>
<td>Biological Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 4304L</td>
<td>Biological Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 4930</td>
<td>Senior Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Students are required to take a nationally-normed chemistry examination in their last semester before graduation.

Specific Courses by Concentration Standard BA-

Chemistry Concentration
1. Choose from List 1 (Cognate Area Courses): Any one course*
 *Premed students should choose BSC 1011/1011L
2. Choose from List 2 (Restricted Electives): Any two courses, one of which must include its corresponding lab.
3. One senior level chemistry elective: (CHM4XXX/CHM5XXX)**
 **CHM 4910L or CHM 4911L may not be used to satisfy this requirement.

Biochemistry Concentration
This concentration is intended for students who desire a comprehensive background in chemistry but with emphasis in biological chemistry. The curriculum is designed to contain all of the courses necessary for entry into medical and dental school.
1. Choose from List 1 (Cognate Area Courses): BSC 1011/BSC 1011L
2. Choose from List 2 (Restricted Electives): CHM 4300 & CHM 4230L or CHM 4307 & CHM 4307L and one other lecture course
3. One senior level chemistry elective: (CHM4XXX/CHM5XXX)** which is biomedically related.
 **CHM 4910L or CHM 4911L may not be used to satisfy this requirement.

Environmental Chemistry Concentration
This concentration is intended for students who desire a comprehensive background in chemistry but with an interest in applying their expertise in chemistry to environmentally-related careers and issues.
1. Choose from List 1 (Cognate Area Courses): An environmentally-related course
2. Choose from List 2 (Restricted Electives): CHM 4130/4130L and one other lecture course
3. One senior level chemistry elective (CHM4XXX/CHM5XXX)** which is environmentally-related.
 **CHM 4910L or CHM 4911L may not be used to satisfy this requirement.

Forensic Chemistry Concentration
This concentration is intended for students who desire a comprehensive background in chemistry but with an interest in applying their expertise in chemistry to a career in forensic science or criminalistics.
1. Choose from List 1 (Cognate Area Courses): CCJ 3024
2. Choose from List 2 (Restricted Electives): CHM 4130/4130L and one other lecture course
3. One senior level chemistry elective (CHM4XXX/CHM5XXX or CHS4XXX/CHS5XXX)** with forensic emphasis.
 **CHM 4910L or CHM 4911L may not be used to satisfy this requirement.

List 1 – Cognate Area Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 1011</td>
<td>General Biology II</td>
<td>3</td>
</tr>
<tr>
<td>BSC 1011L</td>
<td>Gen Biology II Lab</td>
<td>1</td>
</tr>
<tr>
<td>CCJ 3024</td>
<td>The Criminal Justice System</td>
<td>3</td>
</tr>
<tr>
<td>EVR 3011</td>
<td>Environmental Resources</td>
<td>3</td>
</tr>
<tr>
<td>EVR 3013</td>
<td>Ecology of South Florida</td>
<td>3</td>
</tr>
<tr>
<td>EVR 3013L</td>
<td>Ecology of So Fl Lab</td>
<td>1</td>
</tr>
<tr>
<td>EVR 4211</td>
<td>Water Resources</td>
<td>3</td>
</tr>
<tr>
<td>EVR 4211L</td>
<td>Water Resources Lab</td>
<td>1</td>
</tr>
<tr>
<td>EVR 4231</td>
<td>Air Resources</td>
<td>3</td>
</tr>
<tr>
<td>EVR 4310</td>
<td>Energy Resources</td>
<td>3</td>
</tr>
<tr>
<td>EVR 4592</td>
<td>Soils & Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>EVR 4592L</td>
<td>Soils & Ecosystems Lab</td>
<td>1</td>
</tr>
<tr>
<td>GLY 3202</td>
<td>Earth Materials</td>
<td>3</td>
</tr>
<tr>
<td>GLY 3202L</td>
<td>Earth Materials Lab</td>
<td>2</td>
</tr>
<tr>
<td>GLY 4822</td>
<td>Intro to Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>OCE 3014</td>
<td>Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>

List 2 – Restricted Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 4220</td>
<td>Advanced Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 4300</td>
<td>Bio-organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 4307</td>
<td>Biological Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHM 3610</td>
<td>Fundamentals of Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 3411*</td>
<td>Physical Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHM 4130</td>
<td>Instrumental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHM 4230L</td>
<td>Structure Determination Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 4130L</td>
<td>Instrumental Analysis Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 4307L</td>
<td>Biological Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 4611L</td>
<td>Advanced Inorganic Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 3411L</td>
<td>Physical Chemistry II Lab</td>
<td>2</td>
</tr>
<tr>
<td>EVR 4231</td>
<td>Air Resources</td>
<td>3</td>
</tr>
</tbody>
</table>

*CHM 3410 is a prerequisite of CHM 3411.

Chemical Education Major
This program prepares students interested in chemistry and science for teaching at the secondary level. Students are encouraged to participate in on-campus teaching experiences that parallel their coursework, available to freshman and sophomores. Interested students are encouraged to contact the department for additional details and information on teacher support programs.
Lower Division Preparation

Common Prerequisites as Detailed Under the BA Degree

Additional Lower Division Courses (4)

- BSC 1010 General Biology I 3
- BSC 1010L General Biology I Lab 1

Upper Division Program (60)

- CHM 3945 Chemical Education Seminar 1
- CHM 3120 Intro to Analytical Chemistry 3
- CHM 3120L Intro to Analytical Chemistry Lab 1
- CHM 3400 Fundamentals of Physical Chemistry 3
- CHM 3400L Fundamentals of Physical Chemistry Lab 1
- CHM 4304 Biological Chemistry I 3
- CHM 4304L Biological Chemistry I Lab 1
- CHM 4930 Senior Seminar 1
- CHS 4702 Inquiry Instruction in Chemistry 3

Chemical Education Major

List 1 – Elective

- BSC 1011 General Biology II 3
- BSC 1011L General Biology II Lab 1

List 2 – Restricted Electives

Select any two courses. One must include a lab. (7 hrs. min)

- CHM 4220 Advanced Organic Chemistry 3
- CHM 4300 Bio-organic Chemistry 3
- CHM 4307 Biological Chemistry II 3
- CHM 3610 Fundamentals of Inorganic Chemistry 3
- CHM 3411 Physical Chemistry II 4
- CHM 4130 Instrumental Analysis 3
- CHM 4230L Structure Determination Lab 1
- CHM 4130L Instrumental Analysis Lab 1
- CHM 4611L Advanced Inorganic Chemistry Lab 1
- CHM 3411L Physical Chemistry II Lab 2

Education Requirements

- SCE 4894 Nature of Math and Science 3
- SCE 4194 Perspectives in Science and Math Education 3
- SCE 4330 Secondary Science Teaching Methods 3
- SCE 4944 Student Teaching 6
- SCE 4931 Senior Seminar in Science Education 2
- RED 4325 Subject Area Reading 3
- TSL 4324 ESOL Issues and Strategies for Content Teachers 3

Out of Division Elective

3

Minor in Chemistry

The minor in chemistry requires at least 21 credits in chemistry to include:

- General Chemistry I & II
- (CHM 1045, 1045L, and 1046, 1046L) 8
- Introduction to Analytical Chemistry
- (CHM 3120, 3120L) 4
- Organic Chemistry I & II
- (CHM 2210, CHM 2210L, CHM 2211, CHM 2211L) 9

At least half of the credits to be counted towards the minor must be taken at the University.

Pre-Medical, Dentistry, Veterinary, Optometry Curricula

Students who have satisfied the requirements for either the BA or the BS degree in chemistry will also have satisfied the course requirements for admission to professional schools in the above areas. The BA in Chemistry degree (Biochemistry Concentration) includes additional course work relevant to the career objectives of the student. Interested students should consult the Premedical advisor at (305) 348-1515.

Cooperative Education

Students seeking the baccalaureate degree in chemistry may also take part in the Cooperative Education Program conducted in conjunction with the Department of Cooperative Education in the Division of Student Affairs. The student spends one or two semesters fully employed in an industrial or governmental chemistry laboratory. For further information consult the Department of Chemistry or the Department of Cooperative Education at (305) 348-4067.

Department Policy

The Department of Chemistry does not award credit for courses by examination; it does, however, award credit for AP Chemistry with a score of 3 or higher and with evidence of a suitable laboratory experience. The department does not award credit for life experience.

Course Descriptions

Note: Laboratories may not be taken prior to the corresponding course. Laboratories must be taken concurrently where noted. Students must register for the laboratory separately.

Definition of Prefixes

CHM-Chemistry; CHS-Chemistry-Specialized; ISC-Interdisciplinary Natural Sciences; OCC-Chemical Oceanography

F-Fall semester offering; S-Spring semester offering; SS-Summer semester offering.

CHM 1025 Fundamentals of Chemistry (2). Introduces students to basic mathematics required in chemistry, nature of matter, atomic structure, simple chemical reactions and stoichiometry.

CHM 1032 Chemistry and Society (3). CHM 1032L Chemistry and Society Lab (1). A course for non-science majors which introduces students to basic concepts in chemistry and applies those concepts to contemporary issues such as air/water pollution, energy and food production, drugs, nutrition, and toxic chemicals. Prerequisites: One year of high school or college algebra. (Lab fees assessed) (F,S,SS)

CHM 1033 Survey of Chemistry (4). CHM 1033L Survey of Chemistry Lab (1). General and organic chemistry for non-science majors only. Atoms and molecules, states of matter, equilibrium, kinetics, acids and bases and introduction to organic chemistry. Laboratory must be taken concurrently. Does not fulfill requirements for chemistry, biology or pre-med majors. Prerequisites: One
year of high school or college algebra. (Lab fees assessed) (S,SS)

CHM 1045 General Chemistry I (3). CHM 1045L General Chemistry Lab I (1). Fundamental principles of general chemistry: states of matter, atomic structure, stoichiometry, chemical bonding, acid-base reactions, and gas laws. Concurrent registration in both lecture and laboratory is required. Prerequisites: Second year high school algebra or college algebra. (Lab fees assessed) (F,S,SS)

CHM 1046 General Chemistry II (3). CHM 1046L General Chemistry Lab II (1). Continuation of General Chemistry I (CHM 1045). Fundamental principles of chemistry: thermodynamics, solutions, kinetics, equilibrium and electrochemistry. Concurrent registration in both lecture and laboratory is required. Prerequisites: CHM 1045 (with a “C” or better), CHM 1045L. (Lab fees assessed) (F,SS)

CHM 2200 Survey of Organic Chemistry (3). CHM 2200L Survey of Organic Chemistry Lab (1). A basic one-semester survey course in organic chemistry for non-majors presenting a broad background in the reactions and structures of organic molecules. Does not fulfill requirements for chemistry, biology, or pre-med majors. Laboratory must be taken concurrently with the course. Prerequisites: CHM 1032, CHM 1032L, CHM 1033, CHM 1033L, or CHM 1046, CHM 1046L. (Lab fees assessed) (S)

CHM 2210 Organic Chemistry I (4). CHM 2210L Organic Chemistry Lab I (1). An introduction to chemical bonding and atomic structure theory as it pertains to the chemistry of carbon compounds. Correlation between structure and reactivity of organic molecules followed by a systematic look at the various reaction types using reaction mechanisms as a tool for study. Concurrent registration in both lecture and laboratory is required. Prerequisites: CHM 1046 (with a “C” or better), CHM 1046L. (Lab fees assessed) (F,SS)

CHM 2211 Organic Chemistry II (3). CHM 2211L Organic Chemistry Lab II (1). Continuation of CHM 2210, 2210L. Concurrent registration in lecture and laboratory is required. Prerequisites: CHM 2210 (with a “C” or better), 2210L. (Lab fees assessed) (F,SS)

CHM 3120 Introduction to Analytical Chemistry (3). CHM 3120L Introduction to Analytical Chemistry Lab (1). Fundamentals of classical quantitative analysis. Topics include theory of precipitation, acid-base and oxidation-reduction reactions, as well as an introduction to spectrophotometric methods of analysis, ion-exchange techniques and complex formation. Laboratory must be taken concurrently with the lecture. Prerequisites: CHM 1046, (with a “C” or better) CHM 1046L. (F,SS)

CHM 3400 Fundamentals of Physical Chemistry (3). CHM 3400L Fundamentals of Physical Chemistry Lab (1). Principles of physical chemistry. Topics include thermodynamics, equilibria, electrochemistry, and reaction kinetics. Laboratory must be taken concurrently with the course. Prerequisites: MAC 2311, 2312; PHY 2048, 2048L PHY 2049, 2049L, or PHY 2053, 2048L, and 2054, 2049L, CHM 3120, 3120L. (S)

CHM 3410 Physical Chemistry I (4). CHM 3410L Physical Chemistry Lab I (1). Principles of thermodynamics, gas laws, kinetic theory of gases, chemical equilibria, electrochemistry, and kinetics. Laboratory to be taken concurrently with the course. Prerequisites: MAC 2311, 2312; PHY 2048, 2048L PHY 2049, PHY 2049L, and CHM 3120, CHM 3120L. (F)

CHM 3411 Physical Chemistry II (4). CHM 3411L Physical Chemistry Lab II (2). Introduction to quantum mechanics. The Schrodinger equation and its application to rotational, vibrational, and electronic spectroscopy, atomic and molecular structure, and bonding. Prerequisites: CHM 3410, 3410L. (S)

CHM 3420 Advanced Physical Chemistry (3). CHM 3420L Advanced Physical Chemistry Lab (1). An intensive examination of the major areas of contemporary organic chemistry. Reactive intermediates, pericyclic reactions, molecular rearrangements, and modern synthetic methods are among the topics covered. Prerequisites: CHM 2211, 2211L. (F)

CHM 3430 Bio-Organic Chemistry (3). Chemistry of naturally-occurring organic compounds of biological importance. The relationship between organic chemistry and the chemical reactions which constitute the living organism. Prerequisites: CHM 2211, and 2211L. (S)
Experimental methods presented include NMR, enzyme
CHM 4611 Advanced Inorganic Chemistry (3).

instructor. Corequisites: CHM 3410 or permission of the
interactions and their functions. Prerequisites: CHM 2211,
protein-protein, protein- DNA, protein membrane
and how they are determined. Protein-small molecule,

Continuation of Biological Chemistry I (CHM 4304).
Further exploration of bio-organic reaction mechanisms.
Chemistry DNA synthesis and repair. Chemistry of
information transfer. Reactions of drugs. Prerequisite:
Biological Chemistry I (CHM 4304). (S)

Continuation of Biological Chemistry Laboratory I.
Experimental methods presented include NMR, enzyme
inhibition assays, macromolecular thermodynamics,
peptide sequencing, ligand binding assays,

CHM 4321 Protein Chemistry (3). Structures of proteins
and how they are determined. Protein-small molecule,
protein-protein, protein-DNA, protein membrane
interactions and their functions. Prerequisites: CHM 2211,

CHM 4611 Advanced Inorganic Chemistry (3). Atomic
structure, periodicity, bonding and structure of inorganic
compounds, solution chemistry, ligand field theory,
organometallic chemistry, and specific chemistry of
the elements. Prerequisites: CHM 3120, CHM 2211, and
CHM 3411. (F)

CHM 4611L Advanced Inorganic Chemistry Lab (1).
Synthesis, purification, and study of coordination
and organometallic compounds. Prerequisite: CHM 3411.
Corequisite: CHM 4611. (F)

CHM 4910L Undergraduate Research in Chemistry (3).
The student works directly with a professor on a research
project. Credit is assigned based on 4 hr/wk
laboratory/library work per credit hour. A written report is
required. Report must be submitted to the Undergraduate
Research Committee for approval. For additional credits
of undergraduate research student must register for CHM
4911L. (F,S,SS)

CHM 4911L Undergraduate Research 2 (1-20).
Faculty
directed research in chemistry. Credit is assigned based
on 4 hr/wk laboratory/library work per credit hour. May be
repeated. Prerequisite: CHM 4910L. (F,S,SS)

CHM 4930 Senior Seminar (1). Each student will make
an oral presentation to faculty and other students enrolled
in the seminar course. The subject of the seminar may be
either a report of results of an independent study project or
a survey of the recent literature on an assigned topic.
(F,S)

CHM 4931 Special Topics (3). Covers selected topics in
chemistry. Prerequisite: Permission of the instructor.

CHM 4933 Special Topics (3). Covers selected topics in
chemistry. Prerequisite: Permission of the instructor.

CHM 4934 Special Topics (3). Covers selected topics in
chemistry. Permission of the instructor.

CHM 5138 Advanced Mass Spectrometry (3).
Intensive examination of the processes and techniques
involved in creating, controlling and measuring ionic species
by mass spectrometry. Theory of mass spectrometry,
methods of ionization, instrumental designs, quantitative
mass spectrometry, meta-stable ions, and tandem mass
spectrometry. Prerequisites: CHM 4130, CHM 4130L or
permission of the instructor.

CHM 5139C Mass Spectrometry Workshop (2).
Basic description of processes and techniques involved in
creating, controlling and measuring elemental or molecular
ionic species by mass spectrometry techniques. WS

designed to provide hands on experience. Prerequisite:

CHM 5150 Graduate Analytical Methods (3). Analysis of
analytical data, electrochemistry, spectro-analytical
techniques, chromatography, survey of new analytical
methods. Prerequisites: Graduate standing or permission
of the instructor. (S)

CHM 5156 Advanced Chromatography (3).
Intensive examination of the contemporary practice of
chromatography including available chromatographic
techniques, their selection and application. Prerequisites:

CHM 5165 Chemometrics and Sampling (3).
Methods of evaluating analytical chemistry data. Planning
sampling design for water, air and solids. Sample
preparation and extraction techniques. Prerequisite: CHM
4130.

CHM 5225 Graduate Organic Chemistry (3).
Advanced topics in organic chemistry. Structure of
organic molecules, reaction mechanisms, organic synthesis,
and natural product chemistry. Prerequisites: Graduate
standing or permission of the instructor. (F)

CHM 5236 Spectroscopic Techniques and Structures
Elucidation (3). Advanced techniques for the
spectroscopic identification of organic compounds.
Interpretation of spectral information for determination
of structures of various classes of organic compounds.
Prerequisites: CHM 4220 and CHM 4230L.

CHM 5250 Organic Synthesis (3).
Use of classical and
modern reactions in the design and construction of
complex organic molecules including natural products.
Some topics covered will be construction reactions,
refunctionalization, stereochemistry and conformational
analysis. Prerequisites: CHM 4220 or permission of the
instructor.

CHM 5251 Organometallic Chemistry (3).
Fundamentals
and applications of organometallic chemistry. Structures
and bonding, ligand types, organometallic reactions,
physical methods of characterization. Prerequisites: CHM 4611, CHM 3411.

CHM 5252 Asymmetric Synthesis (3). Recent advances in asymmetric synthesis for the selective design and construction of tetrahedral stereo-centers. Focus on principles of configuration in transition state assemblies. Prerequisite: CHM 4220.

CHM 5263 Physical Organic Chemistry (3). A series of topics will be discussed including molecular orbital theory as it pertains to organic molecules, kinetic and thermodynamic approaches to the study of reaction mechanisms, quantitative approaches to conformational analysis, etc. Prerequisites: CHM 4220 and physical chemistry or permission of the instructor.

CHM 5280 Natural Products Chemistry and Biosynthesis (3). Studies of the chemical origins (biosynthesis), properties, and synthesis of the various classes of naturally occurring compounds: terpenes, steroids, alkaloids, and acetogenins. Prerequisites: CHM 4220 or permission of the instructor.

CHM 5285 Marine Natural Products: Chemistry and Pharmacology/Toxicology (3). Identification, isolation, and characterization of toxic and other biologically active compounds from marine sources.

CHM 5302 Organic Chemistry of Nucleic Acids (3). Organic chemistry of ribose sugars, nucleoside heterocyclic bases, mechanism-based inhibitors of enzymes involved in nucleic acid metabolism, and chemical synthesis of DNA. Prerequisites: CHM 4220 or permission of the instructor.

CHM 5305 Graduate Biological Chemistry (3). Structures of biological molecules; Biochemical reaction mechanisms; Enzyme kinetics; Biomolecular thermodynamics; Biomolecular spectroscopy. Prerequisites: Graduate standing or permission of instructor.

CHM 5306 Special Topics in Biological Chemistry (3). Investigation of one or more areas of biologically related chemistry. Prerequisites: CHM 4304 or permission of the instructor.

CHM 5325 Physical Chemistry of Proteins (3). Protein structures, dynamics and functions. Use of spectroscopic methods. Thermodynamics of protein folding and ligand binding. Enzyme Kinetics. Prerequisites: Biological Chemistry and Physical Chemistry or permission of the instructor.

CHM 5351 Computer Modeling of Biological Molecules (3). Introduces use of computers in studying biological macromolecules. Simulations, visualization methods, software, databases. Prerequisites: CHM 3411, Biochemistry recommended.

CHM 5380 Special Topics in Organic Chemistry (VAR). An intensive examination of one or more areas selected by instructor and students. Prerequisites: CHM 4220 and physical chemistry or permission of the instructor.

CHM 5423 Atmospheric Chemistry (3). Chemical processes in atmospheres. Photochemistry, chemical kinetics, tropospheric and stratospheric chemical reactions, anthropogenic effects on the earth’s atmosphere and chemistry of planetary atmospheres. Prerequisites: CHM 3410, CHM 3411, or permission of the instructor.

CHM 5425 Graduate Physical Chemistry (4). Prequantum physics, the Schrodinger equation and its solutions, atoms and molecules, rotational, vibrational, and electronic spectroscopy. Prerequisites: Graduate standing or permission of the instructor.

CHM 5426 Graduate Physical Chemistry II (4). Gas laws; thermodynamics and equilibrium, electrochemistry, and chemical kinetics. Prerequisites: Graduate standing or permission of the instructor.

CHM 5440 Kinetics and Catalysis (3). Theory of elementary reactions, activated complex theory, mechanisms of complex reactions. Prerequisites: CHM 3411, MAP 2302.

CHM 5490 Physical Spectroscopy (3). Introduction to atomic and molecular quantum states, selection rules, and fundamental principles of spectroscopy. Introduction to group theory and to the theory of UV/visible, infrared, Raman, microwave, NMR, photoelectron, and mass spectrosopies, and the applications of these methods to the determination of fundamental physical properties and the structure of organic and inorganic molecules. Prerequisite: Physical Chemistry.

CHM 5490L Physical Spectroscopy Lab (1). The theory of spectroscopy and the use of modern instrumentation to investigate molecular structure. Prerequisites: CHM 2211, 2211L. Corequisites: PHY 4604 or CHM 5490.

CHM 5503 Physical Chemistry of Nucleic Acids (3). Physical chemistry of nucleic acids including spectroscopic determination of structures of DNAs, RNAs, and DNA-protein complexes and thermodynamic and kinetic studies of nucleic acid-ligand complexes and nucleic acid structures. Prerequisites: CHM 4304 or permission of the instructor.

CHM 5506 Physical Biochemistry (3). Physical properties of bio-molecules, molecular conformation; thermodynamic, kinetic, and spectroscopic properties of biomolecules. Prerequisites: CHM 4304 or permission of the instructor.

CHM 5517 Solid State (3). Crystalline form of solids, lattice dynamics, metals, insulators, semiconductors, and dielectric materials. Prerequisites: CHM 5490 or PHY 4604.

CHM 5540 Group Theory In Chemistry (3). The fundamental theory is developed with emphasis given to representations. Specific applications covered, with emphasis on molecular orbital theory and spectroscopy. Prerequisite: CHM 3411.

CHM 5586 Computational Chemistry (3). Surveys computational methods for studying issues pertinent to organic and biological chemistry. Emphasis on developing an understanding of principles and putting methods to use. Includes methods for studying reaction thermodynamics, reaction mechanisms and NMR spectral properties. Prerequisites: CHM 3410, CHM 3411.

CHM 5650 Physical Inorganic Chemistry (3). Introduction to use of physical methods to determine the
structure of inorganic compounds. Prerequisite: CHM 4611 or permission of the instructor.

CHM 5681 Special Topics in Inorganic Chemistry (VAR). An intensive examination of one or more areas selected by instructor and students. Prerequisites: CHM 4611 or permission of the instructor.

CHM 5765 Aquatic Chemistry (3). Redox chemistry, chemistry of sediments, organic biogeochemistry, chemodynamics, and fates or organic pollutants in aqueous environments. Prerequisites: CHM 2211, CHM 4130, or permission of the instructor.

CHM 5931 Special Topics (3). A course covering selected special topics in chemistry.

CHM 5932 Special Topics (3). A course covering selected special topics in chemistry.

CHM 5934 Special Topics in Analytical Chemistry (VAR). An intensive examination of one or more areas selected by instructor and students. Prerequisites: CHM 4130 or permission of the instructor.

CHM 5936 Special Topics in Environmental Chemistry (3). An intensive examination of one or more areas selected by the instructor and students. Prerequisite: Permission of the instructor.

CHM 5938 Special Topics in Physical Chemistry (VAR). An intensive examination of one or more areas selected by instructor and students. Prerequisites: CHM 3411 or permission of the instructor.

CHS 3501 Survey of Forensic Science (3). A survey course introducing the principles and techniques of forensic science as they pertain to crime scene investigation and crime laboratory analysis.

CHS 3501L Survey of Forensic Science Laboratory (1). Laboratory course to accompany survey of forensic science lecture with emphasis on biological evidence. Topics include, CSI, DNA, toxicology, and serology. Corequisite: CHS 3501.

CHS 3511C Forensic Evidence (3). Introduces forensic science students to important aspects of the analysis of physical evidence including crime scene investigation techniques, professional practice and ethics, introduction to the law, and quality assurance. Prerequisites: CHM 1045, CHM 1045L, CHM 1046, CHM 1046L, CHM 2210, CHM 2210L, CHM 2211, CHM 2211L, CHM 3120, CHM 3120L, or permission of the instructor.

CHS 4100 Radiochemistry (2). CHS 4100L Radiochemical Techniques Lab (2). Production, isolation, methods of detection, counting statistics and estimation of radioisotopes. Applications to chemical, physical and biological problems. Laboratory must be taken concurrently with the course. Prerequisites: CHM 1045, 1046, 3120, 3120L; MAC 3411, 3412.

CHS 4503C Forensic Science (3). Modern instrumental methods of chemical analysis and their use in the administration of justice. Prerequisites: CHM 3120 and CHM 2211 or permission of the instructor. Corequisites: a semester of physical chemistry or permission of the instructor.

CHS 4503L Forensic Science Lab (1). Laboratory to accompany Forensic Science, CHS 4503C. Prerequisites: CHM 3120, CHM 3120L, CHM 2211, CHM 2211L or permission of the instructor.

CHS 4533C Forensic Biochemistry Applications (3). Forensic applications of biochemistry including metabolite analysis, DNA analysis and other laboratory methods and data interpretation. Prerequisites: BSC 1010, CHM 2211, CHM 4304, or BCH 3033.

CHS 4591 Forensic Science Internship (3). Internship in a forensic-science laboratory, contributing in a specific manner on an assigned problem. Twenty hrs/wk. Written report required. Open only to students in the Criminalistics Chemistry Program. Prerequisite: Senior standing.

CHS 4600 Marine Chemistry (3). A study of how the chemistry of marine systems operate and interact with biological, geological, and physical processes. Prerequisites: CHM 2211, CHM2211L, CHM 3120, CHM 3120L (or permission of the instructor).

CHS 4702 Inquiry Instruction in Chemistry (3). Inquiry chemistry instruction approach incorporating chemistry education research. Includes general topics, scientific discourse, assessment and technology use in teaching. Prerequisites: CHM 3945 or PHY 3012.

CHS 5502 Forensic Chemistry for Teachers (3). Incorporates concepts and techniques from the application of analytical chemistry, molecular biology, biochemistry, toxicology, and microscopy to forensic casework. Exposure to teaching resources in these areas and case study format of presentation. Open to education majors only. Prerequisites: CHM 3120, CHM 3120L, CHM 2211, and CHM 2211L or permission of the instructor.

CHS 5535 Forensic Analysis (3). An introduction to established chemical analysis techniques used in forensic science and new techniques under development. Prerequisites: CHM 3120, CHM 3120L, CHM 2211, CHM 2211L or permission of the instructor.

CHS 5535L Forensic Analysis Lab (1). Laboratory to accompany Forensic Analysis CHS 5535. Prerequisites: CHM 3120, CHM 3120L, CHM 2211, CHM 2211L or permission of the instructor.

CHS 5536 Forensic DNA Chemistry (3). Chemical basis for current methodologies of DNA analysis. DNA sequencing, PCR, STR, AFLP, mass spectrometry. Prerequisites: CHM 4304 or permission of the instructor.

CHS 5538C Chemistry and Analysis of Drugs (3). Introduction to the chemistry of drugs of abuse, including reactivity, synthesis and the principles of analysis from solid doses and from body fluids. Laboratory analysis through the determination of unknown samples. Prerequisites: CHM 4130, CHM 4130L, CHM 4304, CHM 4304L.

CHS 5539 Forensic Toxicology (3). Provides the basic concepts of forensic toxicology as it applies to drug and body fluid analysis. Prerequisites: CHM 2211L, CHM 3120+L, CHM 4304+L (BCH 3033+L) or permission of the instructor.

CHS 5542 Forensic Chemistry (3). Advanced analytical methods in Forensic Chemistry for application to the
analysis of controlled substances, materials (i.e., paint, glass, and fibers), flammable and explosives residues with an emphasis on new methods and method development.

CHS 5545 Chemistry and Analysis of Explosives (3). Chemistry and reactivity, including thermochemistry, of modern industrial and military explosives with an emphasis on the analysis of explosives residues from post-blast debris and from samples of environmental interest. Prerequisites: CHM 4130, CHM 4130L.

ISC 4041 Scientific Literature (1). This course presents a perspective on the scientific literature and scientific documentation. Problems in using and searching the scientific literature will be specifically designed to meet the needs of various disciplines, e.g., chemistry, environmental science, physics, biology. Prerequisites: 16 semester hours of science.

OCC 5050 Chemical Oceanography (3). Interaction of chemical processes in marine systems with biological, geological, and physical processes. Prerequisites: Graduate standing or permission of the instructor.